Abstract

Increasing computational power allows computer graphics researchers to model spectacular phenomena such as fluids and their interactions with deformable objects and structures. Particle-based (or Lagrangian) fluid and solid simulations are commonly managed separately and mixed together for the collision detection phase. We present a unified dynamic acceleration model to be used for particle neighborhood queries and broad-phase collision detection, based on a hierarchical hash table data structure. Our method is able to significantly reduce computations in large, empty areas, and thus gives better results than existing acceleration techniques, such as multilevel hashing schemes or KD-trees, in most situations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.