Abstract
This paper focuses on direct deposition and patterning of reactive and nano-scale multilayer films at wafer level. These multilayer structures are called integrated reactive material systems (iRMS). In contrast to the typically used nickel (Ni)/ aluminum (Al) systems, in this work we needed to have our total multilayer film thicknesses smaller than 2.5 µm to reduce stress within the multilayer as well as deposition costs. Thus, we introduced new high energetic iRMS. These films were deposited by using alternating magnetron sputtering from high purity Al- and palladium (Pd)-targets to obtain films with a defined Al:Pd atomic ratio. In this paper, we present the result for reaction characteristics and reaction velocities which were up to 72.5 m s−1 for bond frames with lateral dimensions as low as 20 µm. Furthermore, the feasibility of silicon (Si)–Si, Si–glass as well as Si–ceramic hermetic and metallic wafer bonding at room temperature is presented. We show that by using this bond technology, strong (maximum shear strengths of 235 MPa) and hermetically sealed bond interfaces can be achieved without any additional solder material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.