Abstract

In many developing countries a long time series of solar radiation measurements are not often available. This is due to the cost, maintenance and calibration requirements of measuring devices. Consequently, the use of solar energy by Photovoltaic (PV) conversion copes with the choice and the optimization of the PV system. This work concerned the analysis of climate parameters strongly influencing the Photovoltaic (PV) systems energy production and the simulation of an ideal system based on a single PV module. Estimation and analysis of time series of climate parameters covered a set of six weather stations with respect to the three climatic zones in Burkina Faso (BF), over 38 years. The analysis showed that the solar irradiation in BF lies between 3 kWh/m2/day and 7.5 kWh/m2/day. The highest values of the solar irradiation are measured in the Northern part of the country while lowest values are measured in the Southern part. Daily mean temperature for all weather stations was greater than the Standard Test Condition (STC) temperature (25°C) over a long period of the year. Information on solar irradiation and temperature is fundamental for PV systems sizing process. For PV performance evaluation, a simulation is carried out using an ideal system composed of a single PV module from TENESOL Company. This simulation is performed for three classes of climatic conditions "Mean situation", "Adverse situation", and "Beneficial situation", and evaluated for six sitesacross BF. The results revealed intra-annual and spatial variability of Maximum Power (MP). Across BF, MP varied between 60 W/day and 190 W/day in Sahelian zone, between 65 W/day and 185 W/day in soudano-sahelian zone, and between 67 W/day and 208 W/day in Soudanian zone. MP intra-annual variability is higher during the period July-August, mainly for "Beneficial situation". The negative effect of temperature on PV energy production is specially amplified in Sahelian zone due to its highest temperatures. This study allowed to estimate and evaluate the role of climatic parameters on the energy production of PV and can be used as a guide in PV panels sizing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.