Abstract

1. Electrophysiological investigations have revealed a population of ascending tract neurones originating in the lumbosacral enlargement, with input from group II muscle afferents of the cat hindlimb. 2. Single-unit microelectrode recordings were made in the lateral funiculus at L6, from the axons of thirty-four ascending tract neurones. All of the axons were antidromically activated by stimulation of the ipsilateral lateral funiculus at Th13 and, whenever tested (eight units), at C1. 3. Conduction velocities of the axons, between the L6 and Th13 segment, ranged from 33 to 92 m s-1 (mean 61 m s-1). 4. All of the ascending tract neurones were discharged following electrical stimulation of muscle nerves at group II strength, but not by weaker stimuli in the group I range. Most of the investigated neurones were excited by group II afferents of more than one muscle nerve. In addition, a proportion of the units tested could also be discharged by cutaneous and by joint afferents. 5. Responses to natural stimuli were investigated in eighteen ascending tract neurones discharged by electrical stimulation of group II afferents in the gastrocnemius-soleus (GS) and plantaris (P1) nerves which were dissected free in continuity with their muscles. Seven units were spontaneously active. Eight units responded to isometric contraction of the GS/P1 muscles with a discharge occurring mainly on the falling phase of muscle tension. Nine units increased their discharge frequency in response to stretching of the muscles and five units responded to mechanically probing the muscles with a blunt instrument. 6. The final termination sites of this group of ascending tract neurones has yet to be determined. Initial attempts (three units) to antidromically activate the neurones from the cerebellum have been unsuccessful. Other likely areas of termination in the brain stem are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.