Abstract
The central nervous system is not a static, hard-wired organ. Examples of neuroplasticity, whether at the level of the synapse, the cell, or within and between circuits, can be found during development, throughout the progression of disease, or after injury. One essential component of the molecular, anatomical, and functional changes associated with neuroplasticity is the spinal interneuron (SpIN). Here, we draw on recent multidisciplinary studies to identify and interrogate subsets of SpINs and their roles in locomotor and respiratory circuits. We highlight some of the recent progress that elucidates the importance of SpINs in circuits affected by spinal cord injury (SCI), especially those within respiratory networks; we also discuss potential ways that spinal neuroplasticity can be therapeutically harnessed for recovery.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.