Abstract
In the spinal cord of the anesthetized cat, we measured the changes in extracellular concentration of potassium ions [K+]e and the negative DC shifts produced by stimulation of muscle, cutaneous and mixed afferent nerves, together with alterations in the threshold of single group Ia fibers that were tested at the same site as the potassium measurements. This approach provided information on the extent to which the excitability changes of single Ia-fibers can be correlated with the changes in [K+]e occurring at the same site. Stimulation of the tibial (TIB) nerve and of the cutaneous sural (SU), and superficial peroneous (SP) nerve (100-Hz trains lasting 30-60 s) with stimulus strengths of 10-15 times threshold increased the concentration of [K+]e in the dorsal horn by 2-5 mmol/l above the resting value of 3 mmol/l. This was in clear contrast with the very small [K+]e increases produced at the same site during stimulation of muscle nerves, such as the posterior biceps and semitendinosus (PBSt), gastrocnemius soleus (GS), and deep peroneus (DP), which were generally smaller than 0.25 mmol/l. Stimulation of the PBSt and GS muscle nerves did produce small, but clear, increases of [K+]e (up to 0.3 mmol/l) in the region of the intermediate nucleus, where these fibers synapse with second order cells. These changes were nevertheless smaller than those produced at the same site by stimulation of the TIB, SU, and SP nerves. The peak amplitudes of the [K+]e transients produced by long-lasting 100-Hz trains applied to cutaneous and/or to muscle nerves showed a linear relationship with the amplitudes of the slow negative DC shifts, which were simultaneously recorded from the NaCl barrel of the potassium electrode assembly. Stimulus trains (100 Hz) applied to group I muscle afferents (PBSt and DP) very effectively reduced the threshold for intraspinal activation of individual group I GS fibers but produced negligible negative DC shifts at the same site. On the other hand, 100-Hz stimulus trains applied to the SU and SP nerves produced large negative DC shifts, even with low-stimulus strengths (2 X T, where T is threshold), but had much smaller effects on the threshold of group Ia GS fibers. Increasing the intensity of the stimuli applied to cutaneous and mixed nerves above 2 X T strength further reduced the threshold of the Ia-fibers.(ABSTRACT TRUNCATED AT 400 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.