Abstract

In most cases of semiconductor quantum dot nanocrystals, the inherent optical and electrochemical properties of these interesting nanomaterials do not translate into expected efficient electrochemiluminescence or electrogenerated chemiluminescence (ECL) because of the surface-state induction effect. Thus, their low ECL efficiencies, while very interesting to explore, limit their applications. As their electrochemistry is not well-defined, insight into their ECL mechanistic details is also limited. Alternatively, gold nanoclusters possess monodispersed sizes with atomic precision, low and well defined HOMO-LUMO energy gaps, and stable optical and electrochemical properties that make them suitable for potential ECL applications. In this Account, we demonstrate strong and sustainable ECL of gold nanoclusters Au25z (i.e., Au25(SR)18z, z = 1-, 0, 1+), Au38(SR)24, and Au144(SR)60, where the ligand SR is 2-phenylethanethiol. By correlation of the optical and electrochemical features of Au25 nanoclusters, a Latimer-type diagram can be constructed to reveal thermodynamic relationships of five oxidation states (Au252+, Au25+, Au250, Au25-, and Au252-) and three excited states (Au25-*, Au250*, and Au25+*). We describe ECL mechanisms and reaction kinetics by means of conventional ECL-voltage curves and novel spooling ECL spectroscopy. Notably, their ECL in the presence of tri-n-propylamine (TPrA), as a coreactant, is attributed to emissions from Au25-* (950 nm, strong), Au250* (890 nm, very strong), and Au25+* (890 nm, very strong), as confirmed by the photoluminescence (PL) spectra of the three Au25 clusters electrogenerated in situ. The ECL emissions are controllable by adjustment of the concentrations of TPrA· and Au25-, Au250, and Au25+ species in the vicinity of the working electrode and ultimately the applied potential. It was determined that the Au25-/TPrA coreactant system should have an ECL efficiency of >50% relative to the Ru(bpy)32+/TPrA, while those of Au250/TPrA and Au25+/TPrA reach 103% and 116%, respectively. Au25-* is the main light emission source for Au25z in the presence of benzoyl peroxide (BPO) as a coreactant, with a relative efficiency of up to 30%. For Au38, BPO leads to the Au38-* excited state, which emits light at 930 nm. In the Au38/TPrA coreactant system, we find that highly efficient light emission at 930 nm is mainly from Au38+* (and also Au383+*), with an efficiency 3.5 times that of the Ru(bpy)32+/TPrA reference. We show that the ECL and PL of the various Au38 charge states, namely, Au382-, Au38-, Au380, Au38+, Au382+, and Au384+, have the same peak wavelength of 930 nm. Finally, we demonstrate ECL with a peak wavelength of 930 nm from the Au144/TPrA coreactant system, which is released from the electrogenerated excited states Au144+* and Au1443+*. In our opinion, these gold nanoclusters represent a new class of effective near-IR ECL emitters, from which applications such as bioimaging, biological testing, and medical diagnosis are anticipated once they are made water-dispersible with hydrophilic capping ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call