Abstract
The spectroscopy, electrochemistry and electrogenerated chemiluminescence (ECL) of eight bisalicylideneethylenediamino (salen) metal complexes are reported. Two of the complexes contain an unsubstituted salen ligand and either cobalt(II) or nickel(II). The others have 1,2-cyclohexanediamonio- N, N′-bis(3,5-di- t-butylsalicylidene) as the ligand, and chromium(III), aluminum(III), cobalt(II), cobalt(III) or manganese(II) as the metal center. The complexes have lowest energy absorption maxima between 350 and 430 nm. When excited at these wavelengths, the complexes emit between 417 and 594 nm in acetonitrile. Photoluminescence efficiencies ( ϕ em) were between 0.0310 and 23.8 compared to Ru(bpy) 3 2+ (bpy = 2,2′-bipyridine; ϕ em = 1), with the aluminum complexes displaying the most intense photoluminescence. Both reversible and irreversible oxidative electrochemistry is displayed by the metal–salen complexes with oxidation potentials ranging between +0.152 and +1.661 V versus Ag/AgCl. The ECL intensity peaks at a potential corresponding to oxidation of both TPrA and the salen systems, indicating that both are involved in the ECL reaction sequence. ECL efficiencies ( ϕ ecl) were between 0.0018 and 0.0086 when compared to Ru(bpy) 3 2+ ( ϕ ecl = 1) in acetonitrile (0.05 M tri- n-propylamine (TPrA) as an oxidative–reductive ECL coreactant). Also, qualitative studies using transmission filters suggest that the complexes emit ECL in approximately the same region as their photoluminescence, indicating that the same excited state is formed in both experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.