Abstract

A Pd/Al layered double hydroxide/carboxymethyl cellulose nanocomposite (CMC@Pd/Al-LDH) was fabricated using carboxymethyl cellulose as a green substrate via co-precipitation method. The synthesized nanocomposite was characterized using different methods such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray powder diffraction, transmission electron microscopy, and electrochemical techniques. A glassy carbon electrode (GCE) was then modified with the suspended composite to obtain an electrochemical sensor for hydrogen peroxide (H2O2). The voltammetric (cathodic) current of the modified GCE was measured at -380mV (vs. Ag/AgCl), at the scan rate of 50mV.s-1. Results show a linear dynamic range of 1 to 120μM, and a 0.3 µMlimit of detection (at S/N= 3). Intraday and interday relative standard deviations are in the ranges of 4.9-5.4% and 6.8-7.3%, respectively. The sensor was applied for the determination of H2O2 in basil extracts, milk, and spiked river water samples. The recoveries are between 96.60 and 102.30%. Graphical abstractA Pd/Al layered double hydroxide/carboxymethyl cellulose nanocomposite (CMC@Pd/Al-LDH) was fabricated via co-precipitation method and was characterized using scanning electron microscopy, Energy-dispersive X-ray spectroscopy, X-ray powder diffraction, transmission electron microscopy and electrochemical techniques. CMC@Pd/Al-LDH was used to fabricate H2O2 electrochemical sensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call