Abstract

An electrochemical sensor for hydrogen peroxide (H2O2) present in face bleach cream is fabricated using a composite based on bentonite (Bt) clay and copper oxide (CuO) nanoparticles (CuO-Bt). The CuO nanoparticles’ immobilization into Bt was carried out by a two-step process in which Cu2+ is ion-exchanged into Bt layers (Cu2+-Bt) in the first step followed by the chemical reaction of NaOH with Cu2+-Bt in the second step to get the target material, CuO nanoparticles immobilized Bt (CuO-Bt). The successful immobilization of CuO nanoparticles into Bt is investigated by a variety of techniques like scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy, UV-Vis spectroscopy, and electrochemical methods. The CuO-Bt composite is coated on a glassy carbon electrode and used as a selective electrochemical sensing platform for the determination of H2O2 based on the significant electrocatalytic property of CuO-Bt towards the H2O2 oxidation. This amperometric electrochemical sensor shows two linear detection ranges (5–50 μM and 50–10000 μM) with a limit of detection of 4.9 μM. The sensitivity is calculated to be 0.06 µA µM−1 cm−2. This electrochemical sensor exhibits high selectivity, stability, and practical applicability for the H2O2 determination in real samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call