Abstract

An efficient non-enzymatic electrochemical sensor for hydrogen peroxide (H2O2) was constructed by modifying a glassy carbon electrode (GCE) with a nanocomposite prepared from cobalt nanoparticle (CoNP) and tungsten carbide (WC). The nanocomposite was prepared at low temperature through a simple technique. Its crystal structure, surface morphology and elemental composition were investigated via X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The results showed the composite tobe uniformly distributed and that the CoNP are well attached to the surface of the flake-like WC. Electrochemical studies show that the modified GCE has an improved electrocatalytic activity toward the reduction of H2O2. H2O2 can be selectively detected, best at a working voltage of -0.4V (vs. Ag/AgCl), with a 6.3nM detection limit over the wide linear range from 50nM to 1.0mM. This surpasses previously reported non-enzymatic H2O2 sensors. The sensor was successfully applied to the determination of H2O2 in contact lens solutions and in spiked serum samples. Graphical abstract Schematic presentation of a method for electrochemical sensing of hydrogen peroxide in real samples using cobalt nanoparticle decorated tungsten carbide (WCC) modified glassy carbon electrode (GCE).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call