Abstract

In this article, we propose an efficient general simulation method for diffusions that are solutions to stochastic differential equations with discontinuous coefficients and local time terms. The proposed method is based on sampling from the corresponding continuous-time Markov chain approximation. In contrast to existing time discretization schemes, the Markov chain approximation method corresponds to a spatial discretization scheme and is demonstrated to be particularly suited for simulating diffusion processes with discontinuities in their state space. We establish the theoretical convergence order and also demonstrate the accuracy and robustness of the method in numerical examples by comparing it to the known benchmarks in terms of root mean squared error, runtime, and the parameter sensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call