Abstract

Parallel and distributed computing enable the execution of large and complex simulations. Yet, the usual separation of (headless) simulation execution and (subsequent, offline) output analysis often renders the simulation endeavor long and inefficient. Recently, Visual Interactive Simulation (VIS) tools and methods that address this end-to-end efficiency are gaining relevance, offering in-situ visualization, real-time debugging, and computational steering. Here, the typically distributed computing nature of the simulation execution poses synchronization challenges between the headless simulation engine and the user-facing frontend required for Visual Interactive Simulation. To the best of our knowledge, state-of-the-art synchronization approaches fall short due to their rigidity and inability to adapt to real-time user-centric changes. This paper introduces a novel adaptive algorithm to dynamically adjust the simulation’s pacing through a buffer-based framework, informed by predictive workload analysis. Our extensive experimental evaluation across diverse synthetic scenarios illustrates our method’s effectiveness in enhancing runtime efficiency and synchronicity, significantly reducing end-to-end time while minimizing user interaction delays, thereby addressing key limitations of existing synchronization strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.