Abstract

Continuous time Markov Chain (CTMC) approximation techniques have received increasing attention in the option pricing literature, due to their ability to solve complex pricing problems, although existing approaches are mostly limited to one or two dimensions. This paper develops a general methodology for modeling and pricing financial derivatives which depend on systems of stochastic diffusion processes. This is accomplished with a general de-correlation procedure, which reduces the system of correlated diffusions to an uncorrelated system. This enables simple and efficient approximation of the driving processes by uni-variate CTMC approximations. Weak convergence of the approximation is demonstrated, with second order convergence in space. Numerical experiments demonstrate the accuracy and efficiency of the method for various European and early-exercise options in two and three dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.