Abstract
Low-order elements are widely used and preferred for finite element analysis, specifically the three-node triangular and four-node tetrahedral elements, both based on linear polynomials in barycentric coordinates. They are known, however, to under-perform when nearly incompressible materials are involved. The problem may be circumvented by the use of higher degree polynomial elements, but their application become both more complex an computationally expensive. For this reason, non-polynomial enriched finite element methods have been proposed for solving engineering problems. In line with previous researches, the main contribution of this paper is to present a general strategy for enriching the standard simplicial linear finite element by non-polynomial functions. A key role is played by a characterization result, given in terms of the non-vanishing of a certain determinant, which provides necessary and sufficient conditions, on the enrichment functions and functionals, that guarantee the existence of families of such enriched elements. We show that the enriched basis functions admit a closed form representation in terms of enrichment functions and functionals. Finally, we provide concrete examples of admissible enrichment functions and perform some numerical tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.