Abstract
AbstractA methodology is presented for generating enrichment functions in generalized finite element methods (GFEM) using experimental and/or simulated data. The approach is based on the proper orthogonal decomposition (POD) technique, which is used to generate low‐order representations of data that contain general information about the solution of partial differential equations. One of the main challenges in such enriched finite element methods is knowing how to choose, a priori, enrichment functions that capture the nature of the solution of the governing equations. POD produces low‐order subspaces, that are optimal in some norm, for approximating a given data set. For most problems, since the solution error in Galerkin methods is bounded by the error in the best approximation, it is expected that the optimal approximation properties of POD can be exploited to construct efficient enrichment functions. We demonstrate the potential of this approach through three numerical examples. Best‐approximation studies are conducted that reveal the advantages of using POD modes as enrichment functions in GFEM over a conventional POD basis. Copyright © 2009 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.