Abstract

ABSTRACT Efficient and continuous monitoring of surface water is essential for water resource management. Much effort has been devoted to the task of water mapping based on remote sensing images. However, few studies have fully considered the diverse spectral properties of water for the collection of reference samples in an automatic manner. Moreover, water area statistics are sensitive to the satellite image observation quality. This study aims to develop a fully automatic surface water mapping framework based on Google Earth Engine (GEE) with a supervised random forest classifier. A robust scheme was built to automatically construct training samples by merging the information from multi-source water occurrence products. The samples for permanent and seasonal water were mapped and collected separately, so that the supplement of seasonal samples can increase the spectral diversity of the sample space. To reduce the uncertainty of the derived water occurrences, temporal correction was applied to repair the classification maps with invalid observations. Extensive experiments showed that the proposed method can generate reliable samples and produce good-quality water mapping results. Comparative tests indicated that the proposed method produced water maps with a higher quality than the index-based detection methods, as well as the GSWD and GLAD datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.