Abstract
Pursuing the precise structural identification of functional two-dimensional (2D) layered metal chalcogenides (LMCs) are key factors dominating the origins of the unique electronic and ferroelectric properties. However, the complicated phase change of In2Se3 and their high sensitivity towards the intrinsic defects still require the advanced technology to identify the origins of the inhomogeneous charge distribution induced in-plane and out-of-plane ferroelectricity. Herein, we have presented comprehensive theoretical research to reveal the simulated scanning tunneling microscope (STM) images as a toolbox for the experimental results to distinguish the structural features. Moreover, the corresponding electron-phonon behaviors of α-In2Se3 with major intrinsic defects provide pivotal references to explain the unique in-plane and out-of-plane electronic and ferroelectric properties in different applications, which is crucial for optimizing the growth of ultrathin 2D LMCs materials for future electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.