Abstract
We present fast and efficient tight-binding (TB) methods for simulating scanning tunneling microscopy (STM) imaging of adsorbate molecules on ultrathin insulating films. Due to the electronic decoupling of the molecule from the metal surface caused by the presence of the insulating overlayer, STM can be used to image the frontier molecular orbitals of the adsorbate. These images can be simulated with a very efficient scheme based on hopping integrals which also enables the analysis of phase shifts in the STM current. Au–pentacene complex adsorbed on a NaCl bilayer on Cu substrate provides an intricate model system which has been previously studied both experimentally and theoretically. Our calculations indicate that the complicated shape of the molecular orbitals may cause multivalued constant current surfaces – leading to ambiguity of the STM image. The results obtained using the TB methods are found to be consistent with both DFT calculations and experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.