Abstract

The performance of a production system is primarily evaluated by its throughput, which is constrained by throughput bottlenecks. Thus, bottleneck analysis (BA), encompassing bottleneck identification, diagnosis, prediction, and prescription, is a crucial analytical process contributing to the success of manufacturing industries. Nevertheless, BA requires a substantial quantity of information from the manufacturing system, making it a data-intensive task. Based on the dynamic nature of bottlenecks, the optimal strategy for BA entails making well-informed decisions in real-time and executing necessary modifications accordingly. The efficient implementation of BA requires gathering, storing, analyzing, and illustrating data from the shop floor. Utilizing Industry 4.0 technologies, such as cyber-physical systems and cloud technology, facilitates the execution of data-intensive operations for the successful management of BA in real-world settings. The main objective of this study is to establish a framework for BA through the utilization of Cloud-Based Cyber-Physical Systems (CB-CPSs). First, a literature review was conducted to identify relevant research and current applications of CB-CPSs in BA. Using the results of the review, a CB-CPSs framework was subsequently introduced for BA. The application of the framework was assessed via simulation in a real-world manufacturer of marine engines. The findings indicate that the implementation of CB-CPSs can contribute significantly to throughput improvement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call