Abstract

Recognition of facial expressions has been an important topic of study over the last several decades, and despite the advancements that have been made, it is still difficult to do because of the significant intra-class diversity. The handcrafted feature is used in traditional methods to address this issue. This feature is then preceded by a classifier that is trained using a database of pictures or videos. The majority of these works do quite well on datasets of photographs that were recorded in a controlled environment. However, they do not perform as well on datasets that are more difficult to work with since they include greater image variance and partial faces. The Histogram of Oriented Gradient (HOG) descriptor is the foundation for the strategy that is suggested in this study. During the initial step of the procedure, the input picture is pre-processed in order to locate the datum region, which assists in the extraction of the most relevant characteristics. After that, the Random Forest (RF) algorithm was employed as a classifier for facial expressions. The Japanese Female Facial Emotions Database (JAFFE) is used to assess our technique. The experimental findings demonstrated that the suggested method is accurate and effective in identifying facial expressions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.