Abstract

The fluorescent organic nanoparticles (FONs)-based sensor has been attracting great attention in recent years. There are still big challenges in the preparation and application of FONs-based sensor. In this study, a FONs-based sensor was designed and developed through facile hydrothermal process using 3-perylenecarboxaldehyde (PlCA) as the fluorophore and L-methionine (Met) as the recognition site for mercury ions. According to the experimental results, the fluorescence intensity of the as-prepared PlCA-M would decrease when adding Hg2+ and the mechanism was extrapolated to be photoinduced electron transfer inducing by specific coordination interaction. The acquired PlCA-M−based sensor was used to monitor Hg2+ in several real samples (environmental water, tea, and apple) with the limit of detection being 60 nM. Remarkably, a visual detection device based on FONs, SDS-PAAG (sodium dodecyl sulfate polyacrylamide gel) @PlCA-M was firstly constructed and successfully used to Hg2+ semi-quantitation by naked eyes. In addition, the acquired FONs was applied into imaging tool for security information detection and identified as solid-state luminescent material for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.