Abstract

An effective method for the detection of Cr3+ in multivitamin formulations has been developed by using fluorescent organic nanoparticles (FONPs) based on N,N′-bis(5-bromothiophen-2-ylmethyl)ethylenediimine (BTED). In the study, FONPs selectively recognize Cr3+ without inferring other coexisting metal ions in the medium. Since the FONPs enhance the fluorescence intensity with respect to the concentration of Cr ion, they were applied in real samples like multivitamin formulations to detect Cr3+. The stoichiometry of FONPs/Cr3+ analyzed by a Job’s plot was 2:1 (FONPs:metal). The results show that FONPs accurately measure the concentration of Cr3+ in the vitamin tablets in aqueous medium, agreeing with the reported chromium content in the vitamin formulations, and the detection limit was found to be 7.2 μM. Furthermore, the binding nature of the ligand with Cr3+ was studied through the molecular orbital analysis, where a lower energy HOMO was observed for [Cr(BTED)]3+ than that for the free ligand, meaning that the lowering of the receptor HOMO energy enhances the fluorescence emission in the photo-induced electron transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.