Abstract

Aggregation-induced emission (AIE)-active fluorescent organic nanoparticles (FNPs) have been extensively explored for fluorescence “turn-on” bio-imaging applications with the unique advantages over conventional FNPs. Transformation of AIE-active molecules into FNPs can greatly expand their biomedical application potential. Here we reported a novel “one-pot” strategy for fabricating AIE-active FNPs through an ultrasonic-assisted, catalysts-free and solvent-free Kabachnik-Fields (KF) reaction for the first time. The KF reaction can be completed within 10min to generate AIE-active PTH-CHO-PEI-DEP FNPs through mixing polyethylenimine and aldehyde group containing AIE dyes and diethyl phosphate. These PTH-CHO-PEI-DEP FNPs were confirmed by proton nuclear magnetic resonance (1H NMR) spectroscopy, transmission electron microscopy (TEM) and fluorescence spectroscopy etc. The cell uptake behavior as well as cell viability of PTH-CHO-PEI-DEP FNPs was examined to evaluate their potential for biomedical application. We demonstrated that the amphiphilic α-aminophosphonate polymers could self-assemble into PTH-CHO-PEI-DEP FNPs in aqueous solution and showed excellent water dispersibility. TEM image shows the size of PTH-CHO-PEI-DEP FNPs is 100–200nm. More importantly, the PTH-CHO-PEI-DEP FNPs emit strong green fluorescence and desirable biocompatibility, making them very suitable for biomedical applications. Finally, thus smart FNPs design together with their excellent performance will open a new avenue in the development of FNPs for following biological processes such as carcinogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.