Abstract
Core/shell microdroplets formation with uniform size is investigated numerically in the co-flow microchannel. The interface and volume fraction contour between three immiscible fluids are captured using a ternary phase-field model. Previous research has shown that the effective parameters of microdroplet size are the physical properties and velocity of the three phases. By adjusting these variables, five main flow patterns are observed in numerical simulations. A core/shell dripping/slug regime is observed when the inertia of the continuous phase breaks the flow of the core and shell phases and makes a droplet. In the slug regime, the continuous phase has less inertia, and the droplets that form are surrounded by the channel walls, while in the dripping regime, the shell phase fluid is surrounded by the continuous phase. An increase in continuous-fluid or shell-fluid flow rate leads to dripping to a jetting transition. When three immiscible liquids flow continuously and parallel to one another without dispersing, this is known as laminar flow. In the tubing regime, the core phase flows continuously in the channel's central region, the shell phase flows in the annulus formed by the core phase's central region, and the continuous phase flows between the shell phase fluid and channel walls. In order to discriminate between the aforementioned flow patterns using Weber and Capillary numbers and establish regime transition criteria based on these two dimensionless variables, a flow regime map is provided. Finally, a correlation for shell thickness using shell-to-core phase velocity ratio and conducting 51 CFD simulations was proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.