Abstract

An emulsion is a two-phase liquid system of two immiscible liquids, where the liquid with lower mass fraction is dispersed in form of small droplets in other surrounding liquid of higher mass fraction. Emulsions are widely used to produce sol–gel, drugs, synthetic materials, and food products. Based on the size of droplet, emulsions can be classified as micro and macro emulsion. Karbstein and Schubert, (1995) have made a limiting droplet size of 0.1 μm, below which the emulsion is termed as micro emulsion and above that size the emulsion is termed as macro emulsion. Size and size distribution of droplets play important roles in the stability of emulsion. There are also other factors such as sedimentation, skimming, droplet aggregation and coalescence, which may affect the stability of the droplets. Thus for making a stable emulsion it is necessary to convert the dispersed phase into tiny droplets and stabilize them against coalescence. Some amount of energy is required in the process to break the dispersed phase into droplets. The amount of energy put in the dispersing phase also controls the resulting droplet size. The stability of newly formed droplets depends on how fast the used emulsifiers are able to occupy the newly created interfaces and how well they stabilize them. The common devices used to produce emulsions are rotor-stator-systems, stirrers and high-pressure homogenizers. During last two decades, new technologies of making emulsion have been developed. Compared to conventional method of emulsification such as rotor-stator method, these new techniques of emulsification have several advantages such as low energy consumption, controllable droplet size with proper distribution and easy scalability. These new methods are based on the microdroplet formation in micrometer sized channels. Three such new methods are T-junction emulsification, flow focusing emulsification, and membrane emulsification. In all these methods, controllable droplet formations are achieved by properly maintaining the combination of continuous and dispersed phase flow rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.