Abstract
This study, based on density functional theory (DFT) and non-equilibrium Green's functions, systematically analyzes the structural stability and adsorption behavior of gases (CO, CO2, NH3, Cl2, and CH4) on BiSb monolayers, aiming to provide a theoretical foundation for environmental sensors in post-earthquake disaster relief robots. The optimal structures, electron density difference (EDD), electron localization function (ELF), density of states (DOS), band gap, and other adsorption properties of the adsorption systems were examined to elucidate the interactions between gas molecules and the BiSb monolayer. Theoretical results indicate that the adsorption process is exothermic, characterized by negative adsorption energy. Furthermore, the analysis shows that BiSb monolayers exhibit high selectivity for gas adsorption, the adsorption strength follows the order: Cl2 > CO > NH3 > CO2 > CH4. Theoretically, BiSb monolayers hold promise for developing novel gas sensors and adsorbents, applicable to real-time monitoring, search, and rescue operations in post-earthquake scenarios for robotic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.