Abstract

Abstract In the present paper, the effect of a skew insert in a double-cantilever beam specimen in evaluating Mode I delamination fracture energy (GIc) of unidirectional laminated composites is investigated numerically. A delamination growth analysis incorporating the finite element method is utilized to calculate variation of load-displacement-delamination length for a prescribed GIc as delamination propagates along the specimen. In order to evaluate the values of GIc as a function of delamination length, the calculated data were treated as experimental data and processed using two ASTM standard test data reduction methods. These are the modified beam theory and the compliance calibration methods. It is found that the skew front moves progressively to form a thumb-nail curved front during a few millimeters of growth. Part of this growth occurs within the specimen, not visible from the specimen edges where the delamination lengths were recorded during a test. It also is found that the difference between delamination lengths measured at each side of the specimen can have a significant effect on the calculated GIc. To eliminate this error in an actual test, it is suggested that the larger delamination length be used for data processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.