Abstract

A numerical method to compute the nonlinear Fluid-Structure Interactions (FSI) of yacht sails is presented in this paper. The inviscid lifting-line flow model is used by including a quadrature method to efficiently compute sail pressure loads. The structural calculation is performed with a quasi-static resolution by using a dynamic backward Euler scheme, in order to improve the computation convergence. A specific thickness sail approach is also proposed to make the FSI solving easier. The assembly of these flow and structural methods leads to a fast and robust strategy to compute nonlinear FSI on yacht sails, and the proposed approach is applied on a complex semi-rigid composite mainsail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.