Abstract

Corn cob, which possesses low ash and high carbon contents, is a common waste material that accounts for a large amount of agricultural waste. This paper reports about a facile method to synthesize silicon carbide (SiC) nanoparticles with high specific surface area by using corn cob as a carbon source. The method is accomplished by carbothermal reduction at 1350 °C using corn cob as carbon source and silicon monoxide as silicon source. Fourier transform infrared (FT-IR) and Raman spectra results confirmed the formation of synthesized SiC particles. X-ray diffraction (XRD) results indicated the major phases of 3C-SiC. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that the SiC particle size is in the range of 40–100 nm and mainly composed of sphere-shaped nanoparticles. The Brunauer–Emmett–Teller (BET) specific surface area of samples is 80.25 m2/g. In addition, we proposed the formation mechanism of SiC nanoparticles with high specific surface area by adsorption and vapor–solid mechanism. This facile method for synthesizing SiC nanoparticles provides a new idea for high-value application of corn cobs and new raw material for the preparation of silicon carbide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call