Abstract

Abstract On 15–16 May 2004 a severe windstorm struck McMurdo, Antarctica. The Antarctic Mesoscale Prediction System (AMPS) is used, along with available observations, to analyze the storm. A synoptic-scale cyclone weakens as it propagates across the Ross Ice Shelf toward McMurdo. Flow associated with the cyclone initiates a barrier jet along the Transantarctic Mountains. Forcing terms from the horizontal equations of motion are computed in the barrier wind to show that the local time tendency and momentum advection terms are key components of the force balance. The barrier jet interacts with a preexisting near-surface radiation inversion over the Ross Ice Shelf to set up conditions favorable for the development of large-amplitude mountain waves, leading to a downslope windstorm in the Ross Island area. Hydraulic theory can explain the structure of the downslope windstorms, with amplification of the mountain waves possibly caused by wave-breaking events. The underestimation of AMPS wind speed at McMurdo is caused by the misplacement of a hydraulic jump downstream of the downslope windstorms. The dynamics associated with the cyclone, barrier jet, and downslope windstorms are analyzed to determine the role of each in development of the severe winds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.