Abstract
The DC-DC converter is an essential subsystem in electric vehicle (EV) chargers, and most converters depend on a single-input single-output structure, which can be costly when multiple charging units are needed. Additionally, these converters offer limited voltage gain, restricting charging configurations. This paper proposed a dual-stage high-gain converter that operates in a boost mode with reduced components, using an inductor, capacitor, and 2-diodes (LC2D) to provide high-gain output. The proposed Dual Inputs and Dual Outputs (DIDO) converter tied with Photovoltaic (PV) and constant DC acting as inputs and two different voltage levels EV chargers are serving as the output. The proposed converter operates at continuous conduction mode (CCM), achieving high efficiency and reliability with fewer losses. The proposed work was designed for 418V and 85V systems in MATLAB/Simulink, and the results were validated with hardware implementation. The proposed converter delivers high-gain output to the electric vehicle application with 92.2 % efficiency.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have