Abstract

Balanced three-phase four-wire distribution grids can host significantly more distributed generation and electric vehicles. Three-phase photovoltaic (PV) inverters and electric vehicle (EV) chargers can be adapted to transfer power from highly loaded to less loaded phases, without overloading the inverter or charger. Grid conditions will be improved due to a more balanced operation of the network and more PV panels and EVs can be connected before the limits of the network are reached. A classic coordinated charging strategy for EVs is adapted in this paper. It is shown that the charging of EVs can be improved when power can be transferred from one phase to another. Using PV inverters with a balancing inverter, the power injected in each phase will become a controllable variable as the total amount of produced power does not necessarily need to be equally divided across the three phases. The improvements made by using EV chargers and PV inverters that can balance the network are investigated. Several load flow simulations with realistic data show a positive effect on the system losses, the grid voltage, and voltage unbalance. Finally, a local controller is proposed to control the balancing between the phases when a real-time communication channel is not available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call