Abstract
This paper proposes an adaptive control strategy of fuel consumption optimization for hybrid electric vehicles (HEVs). The strategy combines a moving-horizon-based nonlinear autoregressive (NAR) algorithm, a backpropagation (BP) neural network algorithm, and an equivalent consumption minimization strategy (ECMS) method to reduce energy consumption. The moving-horizon-based NAR algorithm is applied to predict the short future driving cycle. The BP neural network algorithm is employed to recognize the driving cycle types, which provides the basis for the adaptive ECMS. Based on the abovementioned approach, the power split of the fuel and electric system is determined in advance, and the optimal control of energy efficiency is achieved. A driving experiment platform is established, taking a synthetic driving cycle composed of several standard driving cycles as the target cycle, and the control strategy is tested by the driver’s real operation. The results indicate that, compared with the basic ECMS, the A-ECMS with moving-horizon-based driving cycle prediction and recognition has better SOC (state of charge) retention and reduces the fuel consumption of the engine by 3.31%, the equivalent fuel consumption of the electric system by 0.9 L/100 km and the total energy consumption by 1 L/100 km. Adaptive ECMS based on driving cycle prediction and recognition is an effective method for the energy management of HEVs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have