Abstract

T cell immunoglobulin and mucin domain 3 (Tim-3) dampens the response of CD4(+) and CD8(+) effector T cells via induction of cell death and/or T cell exhaustion and enhances the ability of macrophages to clear pathogens via binding to galectin 9. Here we provide evidence that human Tim-3 is a target of A disintegrin and metalloprotease (ADAM)-mediated ectodomain shedding resulting in a soluble form of Tim-3. We identified ADAM10 and ADAM17 as major sheddases of Tim-3 as shown by ADAM-specific inhibitors and the ADAM10 pro-domain in HEK293 cells and ADAM10/ADAM17-deficient murine embryonic fibroblasts. PMA-induced shedding of Tim-3 was abrogated by deletion of amino acids Glu(181)-Asp(190) of the stalk region and Tim-3 lacking the intracellular domain was not efficiently cleaved after PMA stimulation. Surprisingly, a single lysine residue within the intracellular domain rescues shedding of Tim-3. Shedding of endogenous Tim-3 was found in primary human CD14(+) monocytes after PMA and ionomycin stimulation. Importantly, the recently described down-regulation of Tim-3 from Toll-like receptor-activated CD14(+) monocytes was caused by ADAM10- and ADAM17-mediated shedding. Inhibition of Tim-3 shedding from lipopolysaccharide-induced monocytes did not influence lipopolysaccharide-induced TNFα and IL-6 but increases IL-12 expression. In summary, we describe Tim-3 as novel target for ADAM-mediated ectodomain shedding and suggest a role of Tim-3 shedding in TLR-mediated immune responses of CD14(+) monocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.