Abstract

We have developed a differential mobility analyzer (DMA) based on the DMA devised by Seto et al. (1997) and a Faraday cup electrometer for measurement of nanometer-sized particles at a few hundred Pa and examined the operating characteristics of the DMA using the tandem DMA technique. The tandem DMA calibration establishes that the DMA successfully classifies particles in the 200–930 Pa pressure range. It was also found that the transfer function of the DMA follows the triangular transfer function and the resolution of the DMA is close to that given for an ideal case. As a standard of a minimum pressure that may be probed with the present DMA system, 400 Pa is estimated when the DMA operates with a 3 nl min −1 sheath flow and a 1 nl min −1 aerosol flow rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.