Abstract

The vienna-type differential mobility analyzer (DMA) was developed for the measurement of wide-range nm-sized particles under low-pressure conditions (2.9-8 kPa) with the faraday cup electrometer (FCE). The length, inner and outer diameter of DMA are calculated as a function of flow rate, applied voltage, pressure, and particle diameter to avoide breakdown in DMA. The algorithm for the diffusion transfer function of the DMA was successfully developed and verified by comparing the numerical and experimental results. The DMA was calibrated via the tandem DMA (TDMA) method which using two DMA in parallel. The inversion algorithm was applied to the size distribution obtained from the current of the FCE. The calibration experiment was performed with 1% NaCl particles under atmospheric and low-pressure conditions. The calibration result showed that the development of the DMA was successful as it was able to measure 20- to 80-nm paricles under low-pressure conditions with various flow rates (0.1-0.5 l/min).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call