Abstract

Atrial Fibrillation (AF) is a common type of irregular heartbeat, and early detection can significantly improve treatment outcomes and prognoses. Single-lead Electrocardiogram (ECG) devices are under extensive scrutiny for monitoring patients' heart health worldwide. Standardized ECG signal monitoring has demonstrated a significant reduction in mortality rates associated with severe cardiovascular diseases. However, the automatic detection method for AF requires significant improvement. This study presents a novel approach that utilizes the cyclostationary analysis of ECG signals, uncovering a spectral hidden periodicity between the QRS-T (the main wave components representing electrical activity in the heart) complexes of the ECG signal through the Spectral Correlation Function (SCF). To validate the proposed method's performance, the single ECG's SCF coefficients are applied to the Convolutional Recurrent Neural Network (CRNN), which consists of convolutional and long short-term memory (LSTM) layers, on the 2017 PhysioNet challenge dataset. The obtained results demonstrate that the proposed approach efficiently represents ECG signals through SCF coefficients, leading to the accurate detection of AF with an average accuracy of 92.76% and an average F1-score of 89.1%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.