Abstract

Abstract The paper presents a combined numerical–deep learning (DL) approach for improving wind and wave forecasting. First, a DL model is trained to improve wind velocity forecasts by using past reanalysis data. The improved wind forecasts are used as forcing in a numerical wave forecasting model. This novel approach, used to combine physics-based and data-driven models, was tested over the Mediterranean. The correction to the wind forecast resulted in ∼10% RMSE improvement in both wind velocity and wave height over reanalysis data. This significant improvement is even more substantial at the Aegean Sea when Etesian winds are dominant, improving wave height forecasts by over 35%. The additional computational costs of the DL model are negligible compared to the costs of either the atmospheric or wave numerical model by itself. This work has the potential to greatly improve the wind and wave forecasting models used nowadays by tailoring models to localized seasonal conditions, at negligible additional computational costs. Significance Statement Wind and wave forecasting models solve a set of complicated physical equations. Improving forecasting accuracy is usually achieved by using a higher-resolution, empirical coefficients calibration or better physical formulations. However, measurements are rarely used directly to achieve better forecasts, as their assimilation can prove difficult. The presented work bridges this gap by using a data-driven deep learning model to improve wind forecasting accuracy, and the resulting wave forecasting. Testing over the Mediterranean Sea resulted in ∼10% RMSE improvement. Inspecting the Aegean Sea when the Etesian wind is dominant shows an outstanding 35% improvement. This approach has the potential to improve the operational atmospheric and wave forecasting models used nowadays by tailoring models to localized seasonal conditions, at negligible computational costs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call