Abstract
Dengue is a mosquito-borne viral disease widely spread in tropical and subtropical regions. Its adverse impact on the human health and global economies cannot be overstated. In order to implement more effective vector control measures, mechanisms that can more accurately forecast dengue cases are needed more urgently than before. In this paper, a novel hybrid architecture which has the advantages of both convolutional neural networks and recurrent neural networks is being proposed to forecast weekly dengue incidence. The forecasting performance of this architecture reveals that the deep hybrid architecture outperforms other frequently used deep learning models in dengue forecasting tasks. We have also evaluated the proposed models against state-of-the-art studies in the literature, demonstrating that our proposed hybrid models utilizing recurrent networks with convolutional layers can provide a significant boost in dengue forecasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.