Abstract
For women, most common cause of death is Breast tumour and in worldwide, it is the second leading reason for cancer deaths. Due the requirement of breast cancer’s early detection and false diagnosis impact on patients, made researchers to investigate Deep Learning (DL) techniques for mammograms. There are four stages in this proposed HIRResCNN framework, namely, Pre-processing, reduction of dimensionality, segmentation and classification. From images, noises are removed using two filtering algorithms called Median and mean filtering in pre-processing stage. Then canny edge detector is used for detecting edges. Gaussian filtering is used in canny edge detector to smoothen the images. In the next dimensionality reduction stage, attributes are correlated using Principal Component Analysis (PCA) inclusive of related features. So, this huge dataset is minimized and only few variables are used for expressing it. In order to detect the breast cancer accurately, foreground and background subtraction is done in the third stage called segmentation stage. At last, for detecting and classifying breast cancer, a Hybrid Inception Recurrent Residual Convolutional Neural Network (HIRResCNN) is introduced, which integrates Harmony Search Optimization (HSO) to tune bias and weight parameters and classification accuracy is enhanced using HIRResCNN-HSO model. Strength of Recurrent Convolutional Neural Network (RCNN), Residual Network (ResNet) and Inception Network (Inception-v4), are combined in a powerful Deep Convolutional Neural Network (DCNN) model called HIRResCNN. using Mammographic Image Analysis Society (MIAS) dataset, various experiments are conduced and results are compared with other available techniques. Around 92.6% accuracy rate is produced using this proposed HIRResCNN classifier in finding breast cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.