Abstract
Recently, motor imagery brain–computer interfaces (BCIs) have been developed for use in motor function assistance and rehabilitation engineering. In particular, lower-limb motor imagery BCI systems are receiving increasing attention in the field of motor rehabilitation, because these systems could accurately and rapidly identify a patient’s lower-limb movement intention, which could improve the practicability of the motor rehabilitation. In this study, a novel lower-limb BCI system combining visual stimulation, auditory stimulation, functional electrical stimulation, and proprioceptive stimulation was designed to assist patients in lower-limb rehabilitation training. In addition, the Riemannian local linear feature construction (RLLFC) algorithm is proposed to improve the performance of decoding by using unsupervised basis learning and representation weight calculation in the motor imagery BCI system. Three in-house experiment were performed to demonstrate the effectiveness of the proposed system in comparison with other state-of-the-art methods. The experimental results indicate that the proposed system can learn low-dimensional features and correctly characterize the relationship between the testing trial and its k-nearest neighbors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.