Abstract

Motor imagery brain computer interface (BCI) systems are considered one of the most crucial paradigms and have received extensive attention from researchers worldwide. However, the non-stationary from subject-to-subject transfer is a substantial challenge for robust BCI operations. To address this issue, this paper proposes a novel approach that integrates joint multi-feature extraction, specifically combining common spatial patterns (CSP) and wavelet packet transforms (WPT), along with transfer learning (TL) in motor imagery BCI systems. This approach leverages the time-frequency characteristics of WPT and the spatial characteristics of CSP while utilizing transfer learning to facilitate EEG identification for target subjects based on knowledge acquired from non-target subjects. Using dataset IVa from BCI Competition III, our proposed approach achieves an impressive average classification accuracy of 93.4%, outperforming five kinds of state-of-the-art approaches. Furthermore, it offers the advantage of enabling the design of various auxiliary problems to learn different aspects of the target problem from unlabeled data through transfer learning, thereby facilitating the implementation of innovative ideas within our proposed approach. Simultaneously, it demonstrates that integrating CSP and WPT while transferring knowledge from other subjects is highly effective in enhancing the average classification accuracy of EEG signals and it provides a novel solution to address subject-to-subject transfer challenges in motor imagery BCI systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.