Abstract

It is essential to accurately model species distributions and biodiversity in response to many ecological and conservation challenges. The primary means of reliable decision-making on conservation priority are the data on the distributions and abundance of species. However, finding data that is accurate and reliable for predicting species distribution could be challenging. Data could come from different sources, with different designs, coverage, and potential sampling biases. In this study, we examined the emerging methods of modelling species distribution that integrate data from multiple sources such as systematic or standardized and casual or occasional surveys. We applied two modelling approaches, “data-pooling” and “ model-based data integration” that each involves combining various datasets to measure environmental interactions and clarify the distribution of species. Our paper demonstrates a reliable data integration workflow that includes gathering information on model-based data integration, creating a sub-model of each dataset independently, and finally, combining it into a single final model. We have shown that this is a more reliable way of developing a model than a data pooling strategy that combines multiple data sources to fit a single model. Moreover, data integration approaches could improve the poor predictive performance of systematic small datasets, through model-based data integration techniques that enhance the predictive accuracy of Species Distribution Models. We also identified, consistent with previous research, that machine learning algorithms are the most accurate techniques to predict bird species distribution in our heterogeneous study area in the western Swiss Alps. In particular, tree-dependent ensembles of Random Forest (RF) contribute to a better understanding of the interactions between species and the environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.