Abstract

Due to the fluctuation characteristics of the wind turbine (WT) production, the design of the control system needs to ensure the stability of the power system at different wind speeds. In this context, a WT-oriented adaptive robust control agent for a static synchronous compensator having additional damper controller (STATCOM-ADC) is proposed in this paper. An artificial neural network based estimator for system identification which can identify the equivalent transfer function of the whole system in real time is used in this paper. Then a Deep Deterministic Policy Gradient (DDPG) algorithm is adopted to train the agent on learning the adaptive robust control strategy for STATCOM-ADC. Compared with other control strategies, the proposed method has modelled self-learning abilities, and the parameter settings provided by the agent for one operation state of the system are still applicable to other states. Simulation results on the actual wind farm located in China Ningxia province show that the proposed method can enhance the stability of the system under different fault conditions and wind speeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.