Abstract
This paper presents an adaptive neuro-fuzzy PID controller based on twin delayed deep deterministic policy gradient (TD3) algorithm for nonlinear systems. In this approach, the observation of the environment is embedded with information of a multiple input single output (MISO) fuzzy inference system (FIS) and have a specially defined fuzzy PID controller in neural network (NN) formation acting as the actor in the TD3 algorithm, which achieves automatic tuning of gains of fuzzy PID controller. From the control perspective, the controller combines the merits of both FIS and PID controller and utilizes reinforcement learning algorithm for optimizing parameters. From the reinforcement learning point of view, embedding the prior knowledge into the fuzzy PID controller incorporated in the actor network helps reduce the learning difficulty in the training process. The proposed method was tested on the cart-pole system in simulation environment with comparison of a linear PID controller, which demonstrates the robustness and generalization of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.