Abstract

Numerous studies have investigated the strain rate sensitive behaviors of materials, consistently reporting enhanced stress values and increased dislocation density with rising strain rates. Behind these phenomena lies the intrinsic nature of dislocation activity. In this context, we introduce an analysis method within a crystal-plasticity (CP) framework, incorporating molecular dynamics insights for a comprehensive range of strain rates (7.5 × 10−5/s to 5 × 107/s). This approach offers a refined understanding of strain rate sensitivity (SRS) behaviors, mainly influenced by dislocation movement laws and strain-rate-dependent saturation of dislocation density. We elucidate the impact of deformation loading conditions on Schmidt factors and active slip systems, which are also crucial for understanding variations in SRS. Ultimately, this study underscores the CP method's effectiveness in comprehensive SRS analysis, seamlessly integrating experimental observations with theoretical predictions for advanced material characterization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call