Abstract

The effects of the grain structure direction on the impact properties and dislocation substructure of 6061-T6 aluminium alloy are investigated under room temperature conditions and strain rates of 1×103, 3×103 and 5×103 s−1 using a split-Hopkinson pressure bar system. The impact tests are performed using specimens machined from rolled 6061-T6 plates in the longitudinal, transverse and through thickness directions respectively. The results show that for all specimens, the flow stress increases with increasing strain rate. Furthermore, for all strain rates, the highest flow stress occurs in the transverse specimen. For strain rates of 1×103 and 3×103 s−1, the flow stress in the through thickness specimen is greater than that in the longitudinal specimen. However, at a strain rate of 5×103 s−1, the flow stress in the longitudinal specimen is higher than that in the through thickness specimen due to a greater dislocation multiplication rate. For all three grain structure directions, the strain rate sensitivity increases with increasing strain rate, but decreases with increasing true strain. The highest strain rate sensitivity is observed in the longitudinal specimen at strain rates of 3×103 to 5×103 s−1. The dislocation density increases markedly with increasing strain rate. Moreover, the square root of the dislocation density varies as a linear function of the flow stress in accordance with the Bailey–Hirsch relationship. The strengthening effect produced by the increased dislocation density is particularly evident in the transverse specimen, followed by the longitudinal specimen and the through thickness specimen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call