Abstract

Hyperspectral image classification (HSIC) is one of the most important research topics in the field of remote sensing. However, it is difficult to label hyperspectral data, which limits the improvement of classification performance of hyperspectral images in the case of small samples. To alleviate this problem, in this paper, a dual-branch network which combines cross-channel dense connection and multi-scale dual aggregated attention (CDC_MDAA) is proposed. On the spatial branch, a cross-channel dense connections (CDC) module is designed. The CDC can effectively combine cross-channel convolution with dense connections to extract the deep spatial features of HSIs. Then, a spatial multi-scale dual aggregated attention module (SPA_MDAA) is constructed. The SPA_MDAA adopts dual autocorrelation for attention modeling to strengthen the differences between features and enhance the ability to pay attention to important features. On the spectral branch, a spectral multi-scale dual aggregated attention module (SPE_MDAA) is designed to capture important spectral features. Finally, the spatial spectral features are fused, and the classification results are obtained. The experimental results show that the classification performance of the proposed method is superior to some state-of-the-art methods in small samples and has good generalization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call