Abstract

Although most deep learning-based methods have achieved excellent performance for hyperspectral image (HSI) classification, they are often limited by complex networks and require massive training samples in practical applications. Therefore, designing an efficient, lightweight model to obtain better classification results under small samples situations remains a challenging task. To alleviate this problem, a novel, lightweight parallel octave convolutional neural network (LPOCNN) for HSI classification is proposed in this paper. First, the HSI data is preprocessed to construct two three-dimensional (3D) patch cubes with different spatial and spectral scales for each central pixel, removing redundancy and focusing on extracting spatial features and spectral features, respectively. Next, two non- deep parallel branches are created for the two inputs, which design octave convolution rather than classical 3D convolution to facilitate light weighting of the model. Then two-dimensional convolutional neural network is used to extract deeper spectral-spatial features when fusing spectral-spatial features from different parallel layers. Moreover, the spectral-spatial attention is designed to promote the classification performance even further by adaptively adjusting the weights of different spectral-spatial features according to their contribution to classification. Experiments show that our suggested LPOCNN acquires a significant advantage on classification performance over other competitive methods under small sample situations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call